Identification of G Protein-Coupled Receptor Kinase 2 Phosphorylation Sites Responsible for Agonist-Stimulated d-Opioid Receptor Phosphorylation

نویسندگان

  • JUN GUO
  • YALAN WU
  • WENBO ZHANG
  • JING ZHAO
  • LAKSHMI A. DEVI
  • GANG PEI
چکیده

Agonist-induced receptor phosphorylation is an initial step in opioid receptor desensitization, a molecular mechanism of opioid tolerance and dependence. Our previous research suggested that agonist-induced d-opioid receptor (DOR) phosphorylation occurs at the receptor carboxyl terminal domain. The current study was carried out to identify the site of DOR phosphorylation during agonist stimulation and the kinases catalyzing this reaction. Truncation (D15) or substitutions (T358A, T361A, and S363G single or triple mutants) at the DOR cytoplasmic tail caused 80 to 100% loss of opioid-stimulated receptor phosphorylation, indicating that T358, T361, and S363 all contribute and are cooperatively involved in agonist-stimulated DOR phosphorylation. Coexpression of GRK2 strongly enhanced agonist-stimulated phosphorylation of the wild-type DOR (WT), but D15 or mutant DOR (T358A/T361A/S363G) failed to show any detectable phosphorylation under these conditions. These results demonstrate that T358, T361, and S363 are required for agonist-induced and GRK-mediated receptor phosphorylation. Agonist-induced receptor phosphorylation was severely impaired by substitution of either T358 or S363 with aspartic acid residue, but phosphorylation of the T361D mutant was comparable with that of WT. In the presence of exogenously expressed GRK2, phosphorylation levels of T358D and S363D mutants were approximately half of that of WT, whereas significant phosphorylation of the T358/S363 double-point mutant was not detected. These results indicate that both T358 and S363 residues at the DOR carboxyl terminus are capable of serving cooperatively as phosphate acceptor sites of GRK2 in vivo. Taken together, we have demonstrated that agonist-induced opioid receptor phosphorylation occurs exclusively at two phosphate acceptor sites (T358 and S363) of GRK2 at the DOR carboxyl terminus. These results represent the identification of the GRK phosphorylation site on an opioid receptor for the first time and demonstrate that GRK is the prominent kinase responsible for agonist-induced opioid receptor phosphorylation in vivo. Opioid receptors are G protein-coupled receptors (GPCRs) including m-, d-, and k-subtypes. Interaction of opiates with opioid receptors produces a strong analgesic effect, but chronic use of opioid drugs causes tolerance and dependence and thus limits the clinical application and results in opioid abuse. The molecular mechanisms underlying opioid tolerance and dependence are complex and not well understood, but desensitization of the opioid receptor has been implicated as a possible mechanism (Nestler and Aghajanian, 1997). Studies of adrenergic receptors and rhodopsin show that mechanisms of desensitization of many GPCRs include phosphorylation of agonist-occupied receptor, binding of arrestin proteins specifically to the phosphorylated receptor, subsequent receptor sequestration, and other agonistor G protein-independent events (Schwinn et al., 1992; Ferguson et al., 1996; Palczewski and Saari, 1997; Krupnick and Benovic,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of G protein-coupled receptor kinase 2 phosphorylation sites responsible for agonist-stimulated delta-opioid receptor phosphorylation.

Agonist-induced receptor phosphorylation is an initial step in opioid receptor desensitization, a molecular mechanism of opioid tolerance and dependence. Our previous research suggested that agonist-induced delta-opioid receptor (DOR) phosphorylation occurs at the receptor carboxyl terminal domain. The current study was carried out to identify the site of DOR phosphorylation during agonist stim...

متن کامل

Identification of phosphorylation sites in the COOH-terminal tail of the μ-opioid receptor.

Phosphorylation is considered a key event in the signalling and regulation of the μ opioid receptor (MOPr). Here, we used mass spectroscopy to determine the phosphorylation status of the C-terminal tail of the rat MOPr expressed in human embryonic kidney 293 (HEK-293) cells. Under basal conditions, MOPr is phosphorylated on Ser(363) and Thr(370), while in the presence of morphine or [D-Ala2, NM...

متن کامل

G Protein-Coupled Receptor Kinase 2 (GRK2) and 5 (GRK5) Exhibit Selective Phosphorylation of the Neurotensin Receptor in Vitro

G protein-coupled receptor kinases (GRKs) play an important role in the desensitization of G protein-mediated signaling of G protein-coupled receptors (GPCRs). The level of interest in mapping their phosphorylation sites has increased because recent studies suggest that the differential pattern of receptor phosphorylation has distinct biological consequences. In vitro phosphorylation experiment...

متن کامل

Heterologous Activation of Protein Kinase C Stimulates Phosphorylation of δ-Opioid Receptor at Serine 344, Resulting in β-Arrestin- and Clathrin-mediated Receptor Internalization*

The purpose of the current study is to investigate the effect of opioid-independent, heterologous activation of protein kinase C (PKC) on the responsiveness of opioid receptor and the underlying molecular mechanisms. Our result showed that removing the C terminus of d opioid receptor (DOR) containing six Ser/Thr residues abolished both DPDPEand phorbol 12-myristate 13acetate (PMA)-induced DOR p...

متن کامل

Loss of morphine reward and dependence in mice lacking G protein-coupled receptor kinase 5.

BACKGROUND The clinical benefits of opioid drugs are counteracted by the development of tolerance and addiction. We provide in vivo evidence for the involvement of G protein-coupled receptor kinases (GRKs) in opioid dependence in addition to their roles in agonist-selective mu-opioid receptor (MOR) phosphorylation. METHODS In vivo MOR phosphorylation was examined by immunoprecipitation and na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000